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Motivation to study Zonal Flows

We want to consider how small magnetic perturbations affect the transport of plasma
in a uniform magnetic field. In the absence of the perturbations the guiding centers
of the ions and electrons will travel along the field lines set up by the background
unperturbed magnetic field, B0. In cases of spherical symmetry (such as toroidal or
cylindrical symmetry), magnetic surfaces will be created where the guiding centers of
the particles in the plasma are constrained to travel along these surfaces. In addition,
poloidally symmetric shear flows called, zonal flows, will develop [1]-[2]. However if a
magnetic perturbation is present that is sufficiently strong it can perturbed the surfaces
enough to where they overlap resulting in the destruction of the magnetic surfaces and
the stochastic wandering of the particles. The magnetic perturbations can arise from
two main sources: (1) self-consistent perturbations produced by a current density within
the plasma and (2) perturbations introduced externally, i.e. via an external coil. The
destruction of magnetic surfaces due to field irregularities has been well studied [3]-[4]
as has the resulting particle transport due to the stochastic magnetic fields that arises
from the destroyed magnetic surfaces [5].

With the objective of investigating particle transport due to magnetic perturbations
we will consider how magnetic perturbations affect the drift kinetics of an electron dis-
tribution in a plasma. Assume that there are magnetic perturbations present that are
sufficient enough to destroy the magnetic surfaces which results in particle diffusion. In
addition, the magnetic perturbations will also cause the zonal flows to be perturbed. To
see how these magnetic perturbations might affect zonal flows we start with the drift
kinetic equation for electrons in a neutral plasma where it is assumed that there is a
uniform magnetic field along the z (parallel/toroidal) direction and that there is a slight
radial perturbation (B̃r) to this magnetic field

∂f

∂t
+ (v‖ · ∇‖)f + v‖

(
B̃r
B0
· ∇⊥

)
f + ... = 0

where f(x, v) is the electron distribution function in position and velocity space and v‖
is the component of the electron velocity parallel to the unperturbed magnetic field. The
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number density is related to the distribution function by integrating over all of velocity
space

n(x) =

∫
dvf(x, v)

Taking the ensemble average of the drift kinetic equation gives us

∂〈ñe〉
∂t

+∇⊥ ·
〈
ṽ‖
B̃r
B0
n0
〉

+ ... = 0

where n0 is the undisturbed electron number density, ñe is the perturbed electron number
density and ṽ‖ is the perturbed electron velocity in the z direction. The parallel electron
velocity perturbation is related to the parallel electron current density perturbation via

J̃‖,e = −|e|n0ṽ‖

Substituting this into the averaged drift kinetic equation gives

∂〈ñe〉
∂t

+∇⊥ ·
〈
B̃r
B0

J̃‖,e

(−|e|)

〉
+ ... = 0

Now we want to find another representation for J‖,e. The Maxwell equation ∇ · B = 0
implies that B = ∇× A where A is the vector potential. Assuming that the change in
the electric field in negligible then Ampere’s law gives

∇×B =
4πJ

c

∇× (∇×A) =
4πJ

c

∇(∇ ·A)−∇2A =
4πJ

c

Using the Coulomb gauge where ∇ ·A = 0 we have

∇2A = −4πJ

c

⇒ ∇2
⊥Ã‖ = −

4πJ̃‖

c

∇2
⊥Ã‖ = −4π

c
(J̃‖,e + J̃‖,i)

J̃‖,e = − c

4π
∇2
⊥Ã‖ − J̃‖,i

J̃‖,e = − c

4π
∇2
⊥Ã‖ − n0|e|ṽ‖,i
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Substituting this result back into the averaged drift kinetic equation and ignoring the
extra terms in the drift kinetic equation gives

∂〈ñe〉
∂t

+∇⊥ ·
〈
B̃r
B0

(
c

4π|e|
∇2
⊥Ã‖ +

n0|e|
|e|

ṽ‖,i

)〉
= 0

∂〈ñe〉
∂t

= −∇⊥ ·
〈
B̃r
B0

(
c

4π|e|
∇2
⊥Ã‖ + n0ṽ‖,i

)〉
By definition of the magnetic field in terms of the vector potential we have B̃r = ∇θÃ‖
and −B̃θ = ∇rÃ‖. Substituting for B̃r in the drift kinetic equation results in

∂〈ñe〉
∂t

= −∇r ·
〈∇θÃ‖

B0

(
c

4π|e|
∇2
⊥Ã‖ + n0ṽ‖,i

)〉
∂〈ñe〉
∂t

= − c

4π|e|B0
∇r ·

〈
(∇θÃ‖)(∇2

⊥Ã)
〉
− n0
B0
∇r ·

〈
B̃rṽ‖,i

〉
Looking at the first term on the right hand side we can use the Taylor identity calculation:〈

(∇θÃ‖)(∇2
⊥Ã)

〉
=
〈
(∇θÃ‖)(∇2

rÃ+∇2
θÃ)
〉

The second term on the right hand side is zero because we are averaging over an odd
number of ∇θ terms, that is, these terms have odd kθ moments in Fourier space

⇒
〈
(∇θÃ‖)(∇2

⊥Ã)
〉

=
〈
(∇θÃ‖)(∇2

rÃ)
〉

〈
(∇θÃ‖)(∇2

⊥Ã)
〉

=
〈
∇r ·

(
(∇θÃ‖)(∇rÃ‖)

)〉
−
〈
(∇r · ∇θÃ‖)(∇rÃ‖)

〉
〈
(∇θÃ‖)(∇2

⊥Ã)
〉

=
〈
∇r ·

(
(∇θÃ‖)(∇rÃ‖)

)〉
−
〈(
∇θ · (∇rÃ‖)

)
(∇rÃ‖)

〉
Once again the second term on the right hand size is zero because we are averaging over
an odd number of ∇θ terms.〈

(∇θÃ‖)(∇2
⊥Ã)

〉
=
〈
∇r ·

(
(∇θÃ‖)(∇rÃ‖)

)〉
〈
(∇θÃ‖)(∇2

⊥Ã)
〉

= −
〈
∇r · (B̃rB̃θ)

〉
Substituting this result back into the drift kinetic equation gives us

∂〈ñe〉
∂t

=
c

4π|e|B0
∇2
r

〈
(B̃rB̃θ)

〉
− n0
B0
∇r ·

〈
B̃rṽ‖,i

〉
Looking at the terms in the brackets for this result we note that the first term on the right
hand side is related to the magnetic stress since it has a B̃rB̃θ component. Whereas the
second term depends on B̃rṽ‖,i and therefore is like a magnetic ”flutter” of parallel ion
flow. There are three important key points to note regarding the final form of the drift
kinetic equation: (1) no explicit dependence of the small electron inertia, (2) the presence
of fluctuating parallel ion flows along with magnetic tilt (B̃r) leads to a decrease in the
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electron density (3) stochastic field perturbations affect the electron density by creating
magnetic stresses. The third point suggests that stochastic fields have an effect on zonal
flows since these flows are fundamentally a charge transport effect thus providing the
motivation to study the effects of stochastic magnetic fields on zonal flows.

Zonal Flows

The simplest zonal flow model is the drift wave model (DW). We start by assuming
that the divergence of the current density is zero and that in Fourier space k‖ = 0 and
kθ = 0. In addition we will assume that there is a background unperturbed magnetic
field, B0, and that there is no perturbing magnetic field.

∇ · J = 0

The current density can be broken into its parallel and perpendicular components

∇ · J = ∇⊥ · J⊥ +∇‖ · J‖

The second term on the right hand side is zero due to the condition k‖ = 0 and we can
further separate J⊥ into its polarization current and global current

∇ · J = ∇⊥ · (J⊥,pol + J⊥,cur)

where J⊥,pol is the current density due to the polarization and J⊥,cur is is the current
density due to the external field (global current). The second term on the right hand
side is zero of the global current is zero since there is no perpendicular divergence of the
unperturbed current.

∇ · J = ∇⊥ · J⊥,pol
⇒ ∇⊥ · J⊥,pol = 0

This result is equivalent to the 2D vorticity equation of the form

∂

∂t
∇2
⊥φ+ (v · ∇)∇2φ = 0

The first term can be thought of as the linear polarization drift and the second term is
the nonlinear polarization drift. Now we average 2D vorticity equation over the zonal
symmetry (i.e. poloidal symmetry)

∂

∂t

〈
∇2
rφ
〉

+∇r
〈
ṽr∇2

rφ
〉

= 0 (1)

The first term in the brackets can be regarded as the polarization charge, Qpol, via
Poisson’s equation and the second term in the brackets is the flux of the polarization
charge.

∂

∂t

〈
Qpol

〉
+∇r

〈
ṽrQpol

〉
= 0
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Assuming a steady state solution where ∂
∂t

〈
Qpol

〉
= 0 we must have that

〈
ṽrQpol

〉
= 0.

Now we consider the net charge flux due to the ion perturbation, electron perturbation
and polarization current:

Γcharge = |e|
〈
ṽrñi

〉
+
〈
ṽrQpol

〉
− |e|

〈
ṽrñe

〉
⇒ Γcharge = |e|

〈
ṽrñi

〉
− |e|

〈
ṽrñe

〉
For a neutral plasma with ñi = ñe the two terms on the right hand side will cancel and
we have

Γcharge = 0

Thus we see that in the absence of magnetic perturbations the net charge flux will be
zero. This means that without magnetic perturbations the zonal flows will be maintained
and unperturbed.

Now we consider the same DW model except we introduce a radial magnetic per-
turbation and determine its effect on particle transport just like we did for the electron
drift kinetic equation. In this case we still have that ∇ · J = 0 but now ∇⊥ · J⊥,pol 6= 0.
Starting with the divergence of the current density

∇ · J = ∇⊥ · J⊥ +∇‖ · J‖ = 0

∇ · J = ∇⊥ · J⊥ +∇(0)
‖ · J‖ +

B̃r
B0
· ∇⊥J‖

As before the second term on the right hand side is zero because k‖ = 0 but the third
term is not zero which leads to the relation

∇⊥ · J⊥,pol +
B̃r
B0
· ∇⊥Jparallel = 0

This gives us a modified 2D vorticity equation:

∂

∂t
∇2
⊥φ+ (v · ∇)∇2φ = B̃r · ∇J̃‖

where the term on the right hand side represents the current flow along the tilted field
lines. Averaging over the zonal symmetry gives us

∂

∂t

〈
∇2
rφ
〉

+∇r
〈
ṽr∇2

rφ
〉

= ∇r
〈
B̃rJ̃‖〉

∂

∂t

〈
∇2
rφ
〉

= −∇r
(〈
ṽr∇2

rφ
〉
−
〈
B̃rJ̃‖〉

)
(2)

Comparing equation (2) with equation (1) we see that the effect of a radial magnetic
perturbation creates a large effect on the polarization charges causing the current to flow
along the tilted field lines. In doing so this will cause the zonal flows to be perturbed.
Introducing the polarization charge as before we then have

∂

∂t

〈
Qpolφ

〉
= −∇r

(〈
ṽrQpolφ

〉
−
〈
B̃rJ̃‖〉

)
5



Assuming a steady state solution where ∂
∂t

〈
Qpol

〉
= 0 we must have that

〈
ṽrQpol

〉
=〈

B̃rJ̃‖
〉
. Assuming the neutral plasma condition (ñi = ñe) the net charge flux due to

the ion perturbation, electron perturbation and polarization current is then given by

Γcharge = |e|
〈
ṽrñi

〉
+
〈
ṽrQpol

〉
− |e|

〈
ṽrñe

〉
Γcharge =

〈
B̃rJ̃‖

〉
From this we once against see that the presence of fluctuating parallel flows along with
magnetic tilt (B̃r) leads to a nonzero net flux of charge. This is equivalent to key point
(2) that we noted regarding the analysis of the electron drift kinetic equation in the first
section of this document.

Ku > 1 Regime

Up till now we have been discussing diffusion and particle transport in the regime
where the Kubo number (Ku) is less than one, that is, Ku < 1. Now we want to
start looking at the Ku > 1 regime. As an introductory example of Ku >1 we will
consider diffusion in a 2D Plasma and we will follow the treatment of J.B. Taylor and
B. McNamara [6]. There are several reasons why we choose to analyze this problem as
our canonical example of the Ku >1 regime.

Firstly, this type of problem is fairly typical in experiments where a large uniform
magnetic field inhibits the diffusion of plasma perpendicular to the field. A calculation
of the perpendicular diffusion coefficient for a plasma in thermal equilibrium in this
scenario will yield a coefficient that is proportional to 1

B2 [6]. However it turns out
that, experimentally, the perpendicular diffusion coefficient is much larger and has a
1
B dependence (i.e. Bohm diffusion). Our treatment here of the 2D Plasma will derive
perpendicular diffusion coefficients that are proportional to the Bohm diffusion coefficient
which is more consistent with experimentation.

Secondly, we will find that the perpendicular diffusion coefficient will have a depen-
dence on the system size. In other words, the coefficient will be an extensive quantity
rather than an intensive quantity. This immediately leads us to reconsider if a diffusion
treatment of the Ku >1 regime is valid. As we will see in later lectures, the proper
treatment of the 2D plasma requires percolation theory [7]. In addition, the 2D plasma
is mathematically equivalent to the problem of transport in random media which is fun-
damentally a percolation problem. Therefore in the next lectures we will be interested
in developing percolation theory in random media.

Before we discuss percolation theory in random medium we must first discuss the
diffusion treatment of the 2D Plasma which necessarily leads us to percolation theory.
To begin the discussion of the 2D Plasma we assume that a background unperturbed
magnetic field, B0, has been set up in the z-direction and we are interested in the per-
pendicular diffusion, D⊥, which we define as the time integral of the velocity correlation

D⊥ =

∫ ∞
0

dτ
〈
ṽ(0)ṽ(τ)

〉
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D⊥ =

∫ ∞
0

dτ
∑
k

|ṽk|2R(τ)

where R(τ) is a memory function given by

R(τ) = e[−ik·r0+ik·r(−τ)]

⇒ D⊥ =

∫ ∞
0

dτ
∑
k

|ṽk|2e[−ik·r0+ik·r(−τ)]

We assume that the particles are only slightly perturbed from their orbits

r(−τ) = r0 + δr(−τ)

where δr is small compared to r0. In addition we will assume that δr is stochastic so we
need to use ensemble averaging

D⊥ =

∫ ∞
0

dτ
∑
k

|ṽk|2
〈
eik·δr(−τ)

〉
We can expand the exponential

〈
eik·δr(−τ)

〉
=

〈(
1 + ik · δr(−τ)− (k · δr(−τ))2

2!
+ ...

)〉
The terms that are odd in k drop out and since (δr)2 ∼ 2D⊥τ we have〈

e−ik·δr(−τ)
〉

=
〈(

1− k2⊥D⊥τ + ...
〉)

〈
e−ik·δr(−τ)

〉
= e−k

2
⊥D⊥τ

Thus the perpendicular diffusion can be written as

D⊥ =

∫ ∞
0

dτ
∑
k

|ṽk|2e−k
2
⊥D⊥τ

D⊥ =
∑
k

|ṽk|2
[
−1

k2⊥D⊥
e−k

2
⊥D⊥τ

]∞
0

D2
⊥ =

∑
k

|ṽk|2

k2⊥

If we assume a continuous symmetric k spectrum then we can exchange the summation
over k for an integral over k-space where the limits are determined by the length scales
of the problem (i.e. system size, Debye length, mean free path, etc.)

D2
⊥ =

∫ kmax

kmin

dk⊥k⊥
|ṽk|2

k2⊥
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D2
⊥ =

∫ kmax

kmin

dk⊥
|ṽk|2

k⊥

The velocity perturbations are related to the electric field perturbations via |ṽk| = c
B0
|Ẽk|

thus we have

D2
⊥ =

c2

B2
0

[ ∫ kmax

kmin

dk⊥
|Ẽk|2

k⊥

]
This gives the general form of the perpendicular diffusion coefficient in a 2D Plasma. In
order to proceed further, we must specify a type of electric field fluctuation spectrum. We
will do this for two cases: (1) thermal equilibrium and (2) a random charge distribution.
For thermal equilibrium the electric field fluctuation spectrum is given by [6]:

|Ek|2 =
4πkBT

l

1

1 + k2⊥λ
2
D

where kB is the Boltzmann constant, T is the temperature, λ2D is the Debye length,
l is the charge length in the z-direction. Substituting this into the equation for the
perpendicular diffusion gives

D2
⊥ =

c2

B2
0

[ ∫ kmax

kmin

dk⊥

(
4πe

el

)
kBT

k⊥(1 + k2⊥λ
2
D)

]

D2
⊥ =

c2

B2
0

[(
4πe2(kBT )2

e2lkBT

)∫ kmax

kmin

dk⊥
1

k⊥(1 + k2⊥λ
2
D)

]

D⊥ =
ckBT

eB0

[(
4πne2

nlkBT

)∫ kmax

kmin

dk⊥
1

k⊥(1 + k2⊥λ
2
D)

] 1
2

D⊥ =
ckBT

eB0

[(
1

nlλ2D

)∫ kmax

kmin

dk⊥
1

k⊥(1 + k2⊥λ
2
D)

] 1
2

Now use the trigonometric substitution k⊥ = tanθ
λD

D⊥ =
ckBT

eB0

[(
1

nlλ2D

)∫
sec2θdθ

λD

λD
tanθ(1 + tan2θ)

] 1
2

D⊥ =
ckBT

eB0

[(
1

nlλ2D

)∫
cosθ

sinθ

] 1
2

D⊥ =
ckBT

eB0

[(
1

nlλ2D

)[
ln|sinθ|

]] 1
2

D⊥ =
ckBT

eB0

[(
1

nlλ2D

)[
ln

∣∣∣∣ k2⊥λ
2
D

[k2⊥λ
2
D + 1]

1
2

∣∣∣∣]kmax

kmin

] 1
2
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For this system, kmin and kmax are given by

kmin ∼
1

L
kmax ∼

1

λD

where L is the system size. The perpendicular diffusion is then given by

D⊥ ∼
ckBT

eB0

[(
1

nlλ2D

)(
ln

∣∣∣∣ 1√
2

∣∣∣∣− ln∣∣∣∣ λD/L[
λ2D/L

2 + 1
] 1
2

∣∣∣∣)] 1
2

D⊥ ∼
ckBT

eB0

[(
1

2nlλ2D

)[
ln

∣∣∣∣1 + L2/λ2D
2

∣∣∣∣]] 1
2

Assuming that L2

λ2D
>> 1 we have

D⊥ ∼
ckBT

eB0

[(
1

nlλ2D

)
ln

∣∣∣∣ L2λD

∣∣∣∣] 1
2

(3)

From this result we see two important aspects. (1) If we identify the Bohm diffusion
coefficient as DB = ckBT

eB0
then we see that the perpendicular diffusion scales with the

Bohm diffusion. (2) We also see that the perpendicular diffusion scales weakly with
respect to the system size L and therefore the perpendicular diffusion is not an intensive
parameter.

Now we will find the perpendicular diffusion for our second case which is a random
array of charges. It will then be worthwhile to compare the perpendicular diffusion
coefficients for the thermal equilibrium case and the case of a random array of charges.
For a random array of point charges we can write the Poisson equation:

∇ · E = 4πρ

∇ · E =
4π

l

∑
i

qiδ(x− xi)

ik · Ek =
4π

l

∑
i

qie
−ik·xi

⇒ |Ek|2 =
1

k2⊥

(
4π

l

)2〈∑
i,j

qiqje
ik·(xi−xj)

〉

⇒ |Ek|2 =
16π2

k2⊥l
2
nq2

Substituting this into the equation for the perpendicular diffusion gives

D2
⊥ =

c2

B2
0

[ ∫ kmax

kmin

dk⊥
16π2

k3⊥l
2
nq2
]
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D2
⊥ =

(
16π2c2nq2

l2B2
0

[
− 1

2k2⊥

]kmax

kmin

)
Assuming that kmin � kmax we can approximate the perpendicular diffusion as

D2
⊥ ∼

(
8π2c2nq2

l2B2
0

[
1

k2min

])
Assuming that kmin is related to the systems size as before, kmin ∼ 1

L , then we have

D⊥ ∼
(

2
√

2πcqn
1
2

lB0
L

)
(4)

Here we see that the perpendicular diffusion has a strong dependence on the system size.
Comparing equation (3) with (4) we see that the dependence on the systems size is much
weaker in the thermal equilibrium case than in the case of a random array of charge. We
also note that in both cases the perpendicular diffusion has a dependence on the systems
size which, as mentioned earlier, leads us the reconsider if a diffusion treatment of Ku
> 1 is correct and ultimately to consider percolation theory as the proper treatment of
the 2D plasma.

Comparison of Ku < 1 and Ku > 1 Regimes

In the previous section we found that the general form of the perpendicular diffusion
coefficient for the Ku > 1 regime is given by

D2
⊥ =

∑
k

|ṽk|2

k2⊥

D2
⊥ ∼

∑
k

|B̃r,k|2

B2
0k

2
⊥

D2
⊥ ∼

∑
k

|Ãk|2

D⊥ ∼
[∑

k

|Ãk|2
] 1

2

D⊥ ∼
B̃r,k∆

B0

where ∆ is the radial correlation length of the scattering particles. Following the treat-
ment of Rosentbluth, et. al [4] the perpendicular diffusion coefficient for the Ku < 1
regime is given by

D⊥ ∼
∑
k

|B̃r,k|2

B2
0

δ(k‖) ∼
|B̃r|2

B2
0

lac
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where lac is the autocorrelation length. Comparison of the diffusion coefficients for the
two regimes shows that the perpendicular diffusion coefficient for the Ku < 1 regime is
more sensitive to radial field perturbations than in the Ku > 1 limit. In addition, we
see that for the Ku > 1 the particles will receive many kicks as the particle travels a
distance of one autocorrelation length which leads to a diffusive process. For Ku > 1, the
presence of ∆ in the diffusion coefficient indicates that the particles will travel distance
longer than ∆ in one kick meaning that the scattering of the particles is very strong
which again leads us to consider a percolation process rather than a diffusion process.
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